企業(yè)智能化建設(shè)手段與方法實(shí)現(xiàn)全新變革,逐漸向全場(chǎng)景、全流程、全層級(jí)深度融合應(yīng)用轉(zhuǎn)變。隨著智能化技術(shù)的不斷發(fā)展和應(yīng)用深入,企業(yè)智能建設(shè)從部分場(chǎng)景、外部維護(hù)、單點(diǎn)優(yōu)化逐漸向系統(tǒng)化、全面化轉(zhuǎn)變,通過(guò)智能基礎(chǔ)設(shè)施和智能應(yīng)用雙驅(qū)重塑企業(yè)智能化發(fā)展勢(shì)能。
一方面,企業(yè)建設(shè)完善人工智能中臺(tái)、知識(shí)中臺(tái)、大模型等智能基礎(chǔ)設(shè)施,筑牢了企業(yè)智能的底座、打造了企業(yè)的知識(shí)大腦、拓寬了企業(yè)的全新賽道,整體上夯實(shí)了企業(yè)智能化發(fā)展的根基。例如國(guó)有六大銀行、電力、石油等大型央企都已經(jīng)建設(shè)了各類(lèi)智能基礎(chǔ)設(shè)施,并依托該設(shè)施為企業(yè)的智能轉(zhuǎn)型提供支持。
另一方面,智能文檔處理、智能會(huì)議、知識(shí)管理、智能客服等各類(lèi)企業(yè)智能應(yīng)用不斷發(fā)展,全面賦能企業(yè)辦公、管理、決策、風(fēng)控、營(yíng)銷(xiāo)、服務(wù)等各個(gè)環(huán)節(jié),促進(jìn)業(yè)務(wù)的數(shù)據(jù)化與知識(shí)化、工作流程的信息化與智能化。智能基礎(chǔ)設(shè)施和智能應(yīng)用相輔相成,智能基礎(chǔ)設(shè)施促進(jìn)智能應(yīng)用的敏捷高效,智能應(yīng)用助推智能基礎(chǔ)設(shè)施底座的升級(jí)優(yōu)化,共同推動(dòng)企業(yè)智能化的加速發(fā)展。
頭部科技企業(yè)先后發(fā)布了AI治理戰(zhàn)略和治理體系,成立了相關(guān)委員會(huì)和工作組,聚焦企業(yè)層面的AI治理和風(fēng)險(xiǎn)管理體系,可信AI技術(shù)和保障工具也在蓬勃發(fā)展
全球人工智能市場(chǎng)收支規(guī)模達(dá)850廳美元,預(yù)測(cè),2022年該市場(chǎng)規(guī)模將同比增長(zhǎng)約20%至 1017廳美元,并將于2025年突破2000廳美元大關(guān), CAGR 達(dá)24.5%
調(diào)度決策外賣(mài)調(diào)度系統(tǒng)困住騎手;個(gè)性化推薦電商場(chǎng)景下的信息繭房和馬太效應(yīng);內(nèi)容治理如何守護(hù)清朗健康的網(wǎng)絡(luò)環(huán)境;人工智能可以放心使用嗎
數(shù)據(jù)不完備和濫用風(fēng)險(xiǎn)突出而損害用戶(hù)的權(quán)益;人工智能算法存在固有缺陷在可解釋性魯棒性偏見(jiàn)歧視等方面尚存在局限;企業(yè)人工智能管理體系不完善
企業(yè)作為落實(shí)人工智能治理原則的重要主體,形成覆蓋人工智能產(chǎn)品全生命周期的風(fēng)險(xiǎn)管理機(jī)制,提出了面向可持續(xù)發(fā)展的人工智能治理基本框架
構(gòu)建面向可持續(xù)發(fā)展的人工智能技術(shù)體系,推動(dòng)人工智能技術(shù)可用、可靠、可信,其內(nèi)涵包括提升技術(shù)安全和構(gòu)建技術(shù)管理機(jī)制兩個(gè)層面工作
在規(guī)劃設(shè)計(jì)階段機(jī)器學(xué)習(xí)場(chǎng)景中固有的不可預(yù)測(cè)性,傳達(dá)實(shí)施偏差會(huì)進(jìn)一步加劇;在研發(fā)部署階段模型運(yùn)行之后的動(dòng)態(tài)更新缺乏足夠驗(yàn)證等挑戰(zhàn)
高增長(zhǎng):未來(lái)五年全球人工智能市場(chǎng)規(guī)模平均增速將超過(guò)20%;高集中:軟件占比近40%硬件產(chǎn)品占比接近35%;高壁壘:滲透率還不到4%
我國(guó)新一代人工智能治理工作框架應(yīng)整合社會(huì)各界對(duì)AI社會(huì)技術(shù)復(fù)合體的離散性認(rèn)知,突破AI包容審慎實(shí)踐的探索,建立基于“邏輯-秩序-監(jiān)管“的人工智能治理工作框架
多模態(tài)數(shù)據(jù)具有異構(gòu)性 多模態(tài)數(shù)據(jù)的關(guān)聯(lián)難度表示較大 多模態(tài)知識(shí)融合困難 多模態(tài)問(wèn)答大多只能處理簡(jiǎn)單的問(wèn)題 多模態(tài)知識(shí)問(wèn)答推理能力弱 可解釋性差
谷歌CVPR 2022擁有18億參數(shù),并使用30億的 標(biāo)注圖像進(jìn)行訓(xùn)練,在ImageNet上取得了新的記錄90.45%,證明了視覺(jué)大模型(30億參數(shù))在廣泛視覺(jué)問(wèn)題上的有效性
OpenAI提出DALLE模型,可以根據(jù)用戶(hù)輸入的文本生成對(duì)應(yīng)的圖像,Imagen模型,CogView,VQ-Diffusion 模型以及 NUWA-infinity 等效果同樣出色