行人檢測作為計算機視覺領(lǐng)域最基本的主題之一,多年來被廣泛研究。盡管最先進的行人檢測器已在無遮擋行人上取得了超過 90% 的準確率,但在嚴重遮擋行人檢測上依然無法達到滿意的效果。究其根源,主要存在以下兩個難點:
嚴重遮擋的行人框大部分為背景,檢測器難以將其與背景類別區(qū)分;
給定一個遮擋行人框,檢測器無法得到可見區(qū)域的信息;
Tube Feature Aggregation Network(TFAN)新方法,即利用時序信息來輔助當(dāng)前幀的遮擋行人檢測,目前該方法已在 Caltech 和 NightOwls 兩個數(shù)據(jù)集取得了業(yè)界領(lǐng)先的準確率。
核心思路
利用時序信息輔助當(dāng)前幀遮擋行人檢測
目前大部分行人檢測工作都集中于靜態(tài)圖像檢測,但在實際車路環(huán)境中大部分目標都處于運動狀態(tài)。針對嚴重遮擋行人的復(fù)雜場景,單幀圖像難以提供足夠有效的信息。為了優(yōu)化遮擋場景下行人的識別,地平線團隊提出通過相鄰幀尋找無遮擋或少遮擋目標,對當(dāng)前圖像中的遮擋行人識別進行輔助檢測。
實驗新方法
Proposal tube 解決嚴重遮擋行人檢測
如下圖,給定一個視頻序列,首先對每幀圖像提取特征并使用 RPN(Region Proposal Network)網(wǎng)絡(luò)生成 proposal 框。從當(dāng)前幀的某個 proposal 框出發(fā),依次在相鄰幀的空間鄰域內(nèi)尋找最相似的proposal框并連接成 proposal tube。
根據(jù)各種指法的具體特點,對時頻網(wǎng)格圖、時域網(wǎng)格圖、頻域網(wǎng)格圖劃分出若干個不同的計算區(qū)域,并以每個計算區(qū)域的均值與標準差作為指法自動識別的特征使用,用于基于機器學(xué)習(xí)方法的指法自動識別
新加坡國立大學(xué)NExT中心的王翔博士分析了知識圖譜在個性化推薦領(lǐng)域的應(yīng)用背景,并詳細介紹了課題組在個性化推薦中的相關(guān)研究技術(shù)和進展,包括基于路徑、基于表征學(xué)習(xí)、基于圖神經(jīng)網(wǎng)絡(luò)等知識圖譜在推薦系統(tǒng)中的融合技術(shù)
新一代移動端深度學(xué)習(xí)推理框架TNN,通過底層技術(shù)優(yōu)化實現(xiàn)在多個不同平臺的輕量部署落地,性能優(yōu)異、簡單易用。騰訊方面稱,基于TNN,開發(fā)者能夠輕松將深度學(xué)習(xí)算法移植到手機端高效的執(zhí)行,開發(fā)出人工智能 App,真正將 AI 帶到指尖
達摩院金榕教授介紹了語音、自然語言處理、計算機視覺三大核心AI技術(shù)的關(guān)鍵進展,并就AI技術(shù)在在實際應(yīng)用中的關(guān)鍵挑戰(zhàn),以及達摩院應(yīng)對挑戰(zhàn)的創(chuàng)新實踐進行了解讀
2020年5月底OpenAI發(fā)布了有史以來最強的NLP預(yù)訓(xùn)練模型GPT-3,最大的GPT-3模型參數(shù)達到了1750億個參數(shù)
解決了傳統(tǒng)圖卷積神經(jīng)網(wǎng)絡(luò)中圖節(jié)點學(xué)習(xí)到的特征對圖分辨率和連接關(guān)系敏感的問題,可以實現(xiàn)在低分辨率的三維形狀上學(xué)習(xí)特征,在高低分辨率形狀之上進行測試,并且保持不同分辨率特征的一致性
外賣履約時間預(yù)估模型,預(yù)估的是從用戶下單開始到騎手將餐品送達用戶手中所花的時間
記憶增強的圖神經(jīng)網(wǎng)絡(luò)對短期的商品語境信息建模,并使用共享的記憶網(wǎng)絡(luò)來捕捉商品之間的長期依賴,對多個模型進行了對比,在Top-K序列推薦中效果極佳
馬庫斯系統(tǒng)性地闡述了對當(dāng)前AI研究界的批判,從認識科學(xué)領(lǐng)域中針對性地給出了11條可執(zhí)行的建議
MIS 和RMIS觸覺傳感器最常用的傳感原理是基于電氣的傳感器。這些觸覺傳感器進一步分為壓阻型、壓電型和電容型傳感器
應(yīng)用于MIS的觸覺傳感器主要是基于電學(xué)或光學(xué)原理開發(fā)的,應(yīng)該是小尺寸和圓柱形的,可在導(dǎo)管的管身或尖端集成
非接觸式檢測平臺FluSense由麥克風(fēng)陣列和熱成像攝像機組成,用于捕捉不同的候診室人群行為,包括咳嗽和語言活動以及候診室病人數(shù)量